earticle

논문검색

A Collaborative Filtering Recommender System Integrated with Interest Drift Based on Forgetting Function

목차

Abstract
 1. Introduction
 2. Related Work
  2.1 Collaborative Filtering Algorithm based on Psychological Model
  2.2 Collaborative Filtering Algorithm Considering Time Factors
 3. Characteristic Analysis of Practical Recommender Systems in China
  3.1 Recommender Systems in E-commerce Websites
  3.2 Recommender Systems in Video and Music Websites
  3.3 Recommender Systems for Small Websites
 4. Proposed Algorithm
  4.1 Improved Measure of User Similarity
  4.2 Improved Time Weight Allocation Algorithm Adapting to User Interest Drift
  4.3 Improved Algorithm for Calculating Predicted Ratings
  4.4 Procedure of the Whole Algorithm
 5. Experiment and Evaluation
  5.1 Datasets
  5.2 Evaluation Criteria With development recommender systems, becomes an subject how efficient a system be. Evaluation methodology become independent research area. Currently, common criteria are prediction precision, coverage rate, diversity credibility. P
  5.3 Results and Discussions
 6. Conclusion
 Acknowledgments
 References

저자정보

  • Wu Sen Donlinks School of Economics and Management, University of Science and Technology Beijing, China,
  • Zhang Xiaonan Donlinks School of Economics and Management, University of Science and Technology Beijing, China,
  • Du Yannan Donlinks School of Economics and Management, University of Science and Technology Beijing, China,

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.