earticle

논문검색

Implementation of Support Vector Machines and Clustering of Intrusion Detection System for Computer Networks

초록

영어

Considering that intrusion detection systems and anomaly clearly recognize malicious activity. Nowadays, data mining based intrusion detection systems, security and more rapidly detect attacks.Therefore,in this article we use a combination of k-means clustering algorithm and is used supervised support vector machine algorithm to find the best line separator. This is leading to the separation of normal and attack traffic.

목차

Abstract
 1. Introduction
 2. Intrusion Detection System
 3. Clustering
  3.1 Clustering with Only Link
  3.2 Clustering with Full Links
  3.3 Mean Link Clustering Method
  3.4 Clustering Using Group Mean the Link
  3.5 Clustering by the distance between
  3.6. Algorithm K -Means
 4. Support Vector Machine
 5. Clustering Algorithms in Intrusion Detection Systems
 6. The Method Proposed
 7. Conclusion
 References

저자정보

  • Narges Salehpour Department of Computer, Science, College of Lorestan, Islamic Azad University, Khorramabad, Iran Department of Computer, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.