earticle

논문검색

Accurate and Diverse Recommendations Based on Communities of Interest and Trustable Neighbors

원문정보

초록

영어

Recommender systems are a critical component of e-commerce websites. Considering the users’ complete spectrum of interests, the limitation of current research on recommender systems lies in that they have only paid attention to improving the accuracy of recommendation algorithms while neglected the diversification of recommendations. In this paper, we integrated a user preference matching algorithm based on communities of interests and a diverse information recommendation algorithm based on trustable neighbors to develop a hybrid information recommendation model that allows for both accuracy and diversity. Results of experiment and evaluation indicated this model can increase the diversity of recommendations with only a minimal accuracy loss.

목차

Abstract
 1. Introduction
 2. Literature Review
 3. Construction of Multi-Hierarchical Communities of Interest
  3.1. HUNC-based Construction of user Interest Ontology
  3.2. Multi-hierarchical Semantic Communities of Interest based on User Interest Ontology
 4. Hybrid Recommendation based on Communities of Interest and Trustable Neighbors
  4.1. User Preference Matching Algorithm based on Communities of Interest
  4.2. Diverse Information Recommendation Algorithm based on Trustable Neighbors
 5. Experiments
 6. Conclusion and Discussion
 ACKNOWLEDGEMENTS
 References

저자정보

  • Qihua Liu High Level Engineering Research Center of Electronic-Commerce, Jiangxi Provincial Colleges and Universities School of Information Technology, Jiangxi University of Finance and Economics

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.