earticle

논문검색

A Parallel PageRank Algorithm with Power Iteration Acceleration

초록

영어

Based on the study about the basic idea of PageRank algorithm, combining with the MapReduce distributed programming concepts, the paper first proposed a parallel PageRank algorithm based on adjacency list which is suitable for massive data processing. Then, after examining the essential characteristics of iteration hidden behind the PageRank, it provided an iteration acceleration model based on vector computing. Following, using such acceleration model, the paper again brought forward a parallel PageRank algorithm with power iteration acceleration with MapReduce. Finally, after abundant experimental analyses, it has been proved that the both the two proposed algorithm can be suitable for massive data processing and the 2nd one can significantly reduce the numbers of iteration and improve the efficiency of PageRank algorithm.

목차

Abstract
 1. Introduction
 2. PageRank Survey
  2.1. PageRank Introduction
  2.2. PageRank Research Statuses
 3. PageRank Parallel Algorithm based Power Method
 4. Parallel PageRank Algorithm Based on Power Iteration Acceleration
  4.1. Power Iteration Acceleration
  4.2. Parallel PageRank Algorithm Based On Power Iteration Acceleration
 5. The Discussion of Experimental Results
  5.1. Experimental Scheme Design
  5.2. Experimental Results Analysis
 6. Conclusion
 Acknowledgements
 References

저자정보

  • Chun Liu School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
  • Yuqiang Li School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.