earticle

논문검색

Large-Scale Data Classification Method Based on Machine Learning Model

원문정보

초록

영어

Classification is to map the data item in the database into a given class. It is an important research direction in data mining. In allusion to the shortcomings of traditional classification methods, such as the decision tree, K nearest neighbor, Bayes , fuzzy logic, genetic algorithms and neural networks and so on, the support vector machine with perfect theory, strong adaptability, global optimization, short training time, good generalization performance is introduced into the classification, a machine learning model based on the SMO algorithm and RBF kernel function of the SVM is proposed to realize a classification method in this paper. This method transforms the nonlinear classification problem into linear classification problem by improving the data dimension. It can better solve the problems of the minimum error in the training set and the larger error in the test set in the traditional algorithm. Application of UCI classification experiment shows that the proposed method takes on the better convergence, faster training speed and higher classification accuracy.

목차

Abstract
 1. Introduction
 2. Support Vector Machine
 3. Machine Learning Model Based on Support Vector Machine
 4. The Key Technology Analysis of Machine Learning Mode
  4.1. The Selection of Kernel Function
  4.2. The SVM Based on SMO Algorithm
 5. Analysis of the Experimental Simulation and Application of Machine Learning Model
  5.1. Classify by Using the SMO Algorithm and Kernel Function
  5.2. Analysis of Large-Scale Data Classification Based on Machine Learning Model
 6. Conclusion
 Acknowledgements
 References

저자정보

  • Hao Jia Department of Electrical Engineering, Dalian Institute of Science and Technology, Dalian 116052 China

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.