earticle

논문검색

Acceleration of the Collision Detection for the Grasping of Objects by a Robotic Hand

원문정보

초록

영어

The objective of this work is to propose two new algorithms for collision detection for real-time application. They are applicable to rigid objects enclosed in boxes in order to improve the time of collision detection. The proposed algorithms, called Neuro-SAT and perceptron learning with displacement of the base frame, will be compared with the algorithm Separating Axis Test (SAT) based on the hierarchy of the OBB tree. A grasping operation of an object, with a robotic hand, was executed to test the developed algorithms. The results, of simulation experiments, reveal a great improvement in the time of collision detection.

목차

Abstract
 1. Introduction
 2. Construction of the Hierarchy of the Bounding Volumes
 3. The OBB Method
 4. Notion of the Separating Axis
 5. Improved of the Detection Collision Time by Changing the Base Frame
 6. Triangle-Triangle Intersection Test
 7. Control of the Manipulator Arms and Fingers
 8. Linearization and Decoupling of the Dynamic Model
 9. Simulation Results of the Collision Detection
 10. Neuro-SAT Algorithm
 11. Implementation of the Algorithms to a Hand and an Object Formed by Triangles
 12. Conclusion
 References

저자정보

  • Redha Fourar Department of Electrical Engineering, Batna University, Algeria
  • Djamel Melaab Department of Electrical Engineering, Batna University, Algeria

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.