earticle

논문검색

Rolling Bearing Fault Diagnosis based on Time-frequency Feature Parameters and Wavelet Neural Network

원문정보

초록

영어

In this paper, we present a novel method in fault diagnosis of rolling bearing based on time-frequency feature parameters and wavelet neural network. First, the time feature parameters are extracted from the vibration signal. Then the empirical mode decomposition (EMD) is used to decompose the signals of rolling bearings into a number of intrinsic mode functions (IMFs), and then the IMF energy-torques could be calculated through the vibration signal. Finally, those time-frequency feature parameters are taken as fault samples to train wavelet neural network (WNN).The analysis results from the experimental show that the time- frequency feature parameters and WNN is effective in rolling bearing fault diagnosis. This paper provides the theoretical foundation for fault diagnosis in rotary machines.

목차

Abstract
 1. Introduction
 2. Time-domain Feature Extraction
 3. EMD Algorithm and Time-frequency Domain Feature Extraction
  3.1. EMD Algorithm
  3.2. Time-frequency Domain Feature Extraction
 4. Wavelet Neural Network Model
 5. Experimental Results and Analysis
  5.1. The Process of Time-frequency Domain Feature Extraction
  5.2. The Process of WNN
 6. Conclusion
 Acknowledgement
 References

저자정보

  • Wang Xing Taiyuan University of Science and Technology, Taiyuan Shanxi, 030024, China
  • Qi Xiangdong Taiyuan University of Science and Technology, Taiyuan Shanxi, 030024, China
  • Li Baojin Taiyuan Tong xin de Tech. & Trading Co., Ltd, Taiyuan Shanxi, 030024, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.