earticle

논문검색

How Does Prior Information Affect Analyst Forecast Herding?

초록

영어

This research uses four different measures of bold to investigate how prior information affects analyst herding decisions. Results for the more restrictive measures of bold suggest that the probability of herding is greater with large information shocks. Evidence also shows that analysts are more likely to herd in their forecast revisions when their current outstanding forecasts deviate more from the consensus mean and in the presence of strong observable signals. In general, analysts with current outstanding forecasts that are optimistic are more likely to issue revised forecasts that are also optimistic.

목차

Abstract
 I. Introduction
 II. Prior Literature and Hypothesis Development
 III. Sample Selection
 IV. Research Design and Model Development
  4.1. Measurement of Bold (Herding) Forecasts
  4.2. Model Development
 V. Results
  5.1. Descriptive Statistics
  5.2. The Association between Forecast Boldness and Prior Information
  5.3. The Effect of Analyst Optimism on Forecast Revision Boldness
  5.4. The Effect of Signal Strength on Bold Forecasts
  5.5. Controlling for Analyst Characteristics
 VI. Summary and Conclusion
 References
 Table

저자정보

  • Michele O'Neill College of Business and Economics The University of Idaho
  • Minsup Song College of Business and Administration Sogang University
  • Judith Swisher Department of Finance and Commercial Law Haworth College of Business Western Michigan University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 9,000원

      0개의 논문이 장바구니에 담겼습니다.