earticle

논문검색

Text Categorization System for Stock Prediction

초록

영어

Due to the complex market environment, it is very difficult to get the accurate predict of the stake only by the data analysis method. This paper uses the text categorization method to predict the trend of the stock. We divide the text categorization method into the following three steps: Text representation, Feature selection and Text Categorization. By comparing several categorization methods including feature selections and feature spaces, etc., the results show that the SVM method with Information Gain and 1000 feature spaces can get the better performance for the predict of the stock with the news.

목차

Abstract
 1. Introduction
 2. Text Representation
  2.1. Related Works
  2.2. Text Preprocessing
  2.3. Feature Representation
 3. Feature Selection Methods
  3.1. IG (Information Gain)
  3.2. CHI Square Statistics
  3.3. Mutual Information (MI)
  3.4. Expected Cross Entropy (ECE)
 4. Text Categorization Methods
  4.1. K Nearest Neighbors (KNN)
  4.2. Support Vector Machine (SVM)
 5. Analysis and Result
  5.1. Text Collections
  5.2. Evaluation Measures
  5.3. Analysis
 5. Conclusion
 Acknowledgements
 References

저자정보

  • Bozhao Li School of Computer and Information Engineering, Beijing Technology and Business University, Beijing, 100048, China
  • Na Chen School of Computer and Information Engineering, Beijing Technology and Business University, Beijing, 100048, China
  • Jing Wen School of Computer and Information Engineering, Beijing Technology and Business University, Beijing, 100048, China
  • Xuebo Jin School of Computer and Information Engineering, Beijing Technology and Business University, Beijing, 100048, China
  • Yan Shi School of Computer and Information Engineering, Beijing Technology and Business University, Beijing, 100048, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.