earticle

논문검색

Semantic Annotation of Ontology by Using Rough Concept Lattice Isomorphic Model

초록

영어

Semantic annotation is the process based on ontology annotation concept class, attribute and other metadata for cyber source and its various parts. Ontology mapping is to calculate the similarity between two ontology elements. Ontology merging is two or more source ontology merging into a goal Ontology. The basic principle of the concept lattice isomorphic generating is isomorphic to the background of the isomorphic concept lattice, and as concept lattice isomorphic background can generate the concept lattice. This paper analyzes the methods of ontology mapping and merging based on rough concept lattice isomorphic model and presents semantic annotation of ontology by using rough concept lattice isomorphic model. Experiments show that this method is better than the traditional method in semantic annotation accuracy and breadth.

목차

Abstract
 1. Introduction
 2. Ontology Mapping and Merging based on Rough Concept Lattice Isomorphic Model
  2.1. Research on Rough Concept Lattice Isomorphic Model
  2.2. Analysis of Ontology Mapping based on Concept Similarity
  2.3. Ontology Merging Strategy based on Concept Lattice Isomorphism Theory
 3. Semantic Annotation based on Rough Concept Lattice Model
 4. Using Rough Concept Lattice Isomorphic Model to Semantic Annotation of Ontology
 5. Experiments and Analysis
 6. Summary
 Acknowledgements
 References

저자정보

  • Hongsheng Xu College of Information Technology, Luoyang Normal University Henan LuoYang, 471022, China
  • Ruiling Zhang College of Information Technology, Luoyang Normal University Henan LuoYang, 471022, China
  • Chunjie Lin College of Information Technology, Luoyang Normal University Henan LuoYang, 471022, China
  • Wenli Gan College of Information Technology, Luoyang Normal University Henan LuoYang, 471022, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.