earticle

논문검색

A Rough Set Based Feature Selection on KDD CUP 99 Data Set

초록

영어

In the present era as internet is growing with exponential pace, computer security has become a critical issue. In recent times data mining and machine learning have been researched extensively for intrusion detection with the aim of improving the accuracy of detection classifier. KDD CUP’ 99 Data set is the most widely used dataset in research domain. Selecting important feature on the basis of rough set based feature selection approach have lead to a simplification of the problem, faster and more accurate detection rates. In this paper, we presented an efficient approach for detecting relevant features from the KDD CUP’99 Data set.

목차

Abstract
 1. Introduction
 2. Basic Concept of Rough Set Theory
  2.1. Information System
  2.2. Indiscrenibility Relation
  2.3. Lower and Upper Approximations
  2.4. Accuracy of Approximation
  2.5. Core and Reduct of Attributes
 3. KDD CUP 99 Data Set
  3.1. Denial-of-Service (DoS)
  3.2. Probing or Surveillance
  3.3. User-to-Root (U2R)
  3.4. Remote-to-Local (R2L)
 4. Proposed Approach
 5. Experimental Analysis and Results
 6. Conclusion and Future Work
 Reference

저자정보

  • Vinod Rampure Department of CSE & IT, Madhav Institute of Technology and Science, Gwalior (M.P), India
  • Akhilesh Tiwari Department of CSE & IT, Madhav Institute of Technology and Science, Gwalior (M.P), India

참고문헌

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.