earticle

๋…ผ๋ฌธ๊ฒ€์ƒ‰

Greedy Algorithms for Target Coverage Lifetime Management Problem in Wireless Sensor Networks

์›๋ฌธ์ •๋ณด

Babacar Diop, Dame Diongue, Ousmane Thiarรฉ

ํ”ผ์ธ์šฉ์ˆ˜ : 0๊ฑด (์ž๋ฃŒ์ œ๊ณต : ๋„ค์ด๋ฒ„ํ•™์ˆ ์ •๋ณด)

์ดˆ๋ก

์˜์–ด

When several low power sensors are randomly deployed in a field for monitoring targets located at fixed positions, managing the network lifetime is useful as long as replacing battery of dead sensors is not often feasible. The most commonly investigated mechanism for coverage preserving while maximizing the network lifetime is to design efficient sleep scheduling protocols, so that sensors can alternate their state between being active or not. Maximizing lifetime of a sensor network while satisfying a predefined coverage requirement is an optimization problem, which most of times cannot be optimally solved in polynomial time. In this paper, we address this problem by using set cover approach. We propose a greedy algorithm that distributes sensors among disjoints and non-disjoints set covers with the requirement that each set cover satisfies full targets coverage. The algorithm is an improvement of the classical greedy set cover algorithm, and its approximation ratio is verified to be not worse than ๐‘™๐‘œ๐‘”โก(๐‘š). Simulation results show good performance over some other solutions found in the literature. We provide also a comparison of several greedy techniques found in the literature addressed in the context of different design choices linked to the target coverage problem.

๋ชฉ์ฐจ

Abstract
 1. Introduction
 2. Target Coverage Problem
  2.1. Assumptions
  2.2. Problem Definition
  2.3. Maximum Set Cover Problem
  2.4. Non-disjoint Sets Constraint
 3. Sensors Selection Mechanism
  3.1. Theoretical Bound
  3.2. Sensors Cost Evaluation
 4. Using Greedy Algorithms
  4.1. Greedy Minimum Set Cover
  4.2. Approximation Ratio of Greedy-MSSC
  4.3. Greedy Maximum Set Cover
  4.4. Complexity Analysis
 5. Simulation Results
  5.1. Experiment 1
  5.2. Experiment 2
  5.3. Experiment 3
  5.4. Experiment 4
 6. Related Works
  6.1. Sensors Placement Optimization Problem
  6.2. Sleep Scheduling Mechanisms
  6.3. Connected Target Coverage
  6.4. Target Coverage under QoS Constraint
 7. Conclusion
 Acknowledgement
 References

์ €์ž์ •๋ณด

  • Babacar Diop Department of Computer Science Faculty of Applied Sciences and Technology University Gaston Berger, BP. 234 Saint-Louis, Senegal
  • Dame Diongue Department of Computer Science Faculty of Applied Sciences and Technology University Gaston Berger, BP. 234 Saint-Louis, Senegal
  • Ousmane Thiaré Department of Computer Science Faculty of Applied Sciences and Technology University Gaston Berger, BP. 234 Saint-Louis, Senegal

์ฐธ๊ณ ๋ฌธํ—Œ

์ž๋ฃŒ์ œ๊ณต : ๋„ค์ด๋ฒ„ํ•™์ˆ ์ •๋ณด

    ํ•จ๊ป˜ ์ด์šฉํ•œ ๋…ผ๋ฌธ

      โ€ป ์›๋ฌธ์ œ๊ณต๊ธฐ๊ด€๊ณผ์˜ ํ˜‘์•ฝ๊ธฐ๊ฐ„์ด ์ข…๋ฃŒ๋˜์–ด ์—ด๋žŒ์ด ์ œํ•œ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

      0๊ฐœ์˜ ๋…ผ๋ฌธ์ด ์žฅ๋ฐ”๊ตฌ๋‹ˆ์— ๋‹ด๊ฒผ์Šต๋‹ˆ๋‹ค.