earticle

논문검색

기술논문

방사선 치료 선량 계산을 위한 신경회로망의 적용 타당성

원문정보

A Feasibility Study on Using Neural Network for Dose Calculation in Radiation Treatment

이상경, 김용남, 김수곤

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Dose calculations which are a crucial requirement for radiotherapy treatment planning systems require accuracy and rapid calculations. The conventional radiotherapy treatment planning dose algorithms are rapid but lack precision. Monte Carlo methods are time consuming but the most accurate. The new combined system that Monte Carlo methods calculate part of interesting domain and the rest is calculated by neural can calculate the dose distribution rapidly and accurately. The preliminary study showed that neural networks can map functions which contain discontinuous points and inflection points which the dose distributions in inhomogeneous media also have. Performance results between scaled conjugated gradient algorithm and Levenberg-Marquardt algorithm which are used for training the neural network with a different number of neurons were compared. Finally, the dose distributions of homogeneous phantom calculated by a commercialized treatment planning system were used as training data of the neural network. In the case of homogeneous phantom, the mean squared error of percent depth dose was 0.00214. Further works are programmed to develop the neural network model for 3-dimensinal dose calculations in homogeneous phantoms and inhomogeneous phantoms.

한국어

방사선치료계획장치의 핵심기술인 선량분포 계산은 빠르고 정확함을 요구한다. 기존 상용화된 치료계획장치의 선량계산 방법은 빠르지만 정확성이 부족하고, 몬테칼로 방법은 시뮬레이션 시간과다 문제가 있다. 관심영역의 일부만 몬테칼로 방법이 계산하고 나머지 영역은 비선형함수사상 능력이 뛰어난 신경회로망이 계산하는 시스템은 상대적으로 빠르고 정확한 선량분포를 계산해낼 수 있다. 비균질 매질의 선량분포에 나타나는 불연속점과 변곡점의 특성을 신경회로망이 학습가능 하다는 것을 사전 작업을 통해 확인하였다. 이때 사용된 신경회로망은 Feedforward Multi-Layer Perceptron에 Scaled Conjugated Gradient 알고리즘과 Levenberg-Marquardt 알고리즘으로 각각 학습하여 성능비교를 하였고, 은닉층의 뉴런 개수에 따른 성능비교도 하였다. 마지막으로 균질매질의 팬텀에 대해 상용 치료계획장치의 선량계산 알고리즘으로 계산한 선량분포를 사전작업을 통해 확인된 신경회로망에 학습하여 깊이선량율의 평균제곱오차가 0.00214인 결과를 보여주었다. 균질 및 비균질 매질의 팬텀에 대한 3차원 선량분포를 계산하는 신경회로망 모델 개발 연구가 추가로 진행될 것이다.

목차

요약
 1. 서론
 2. 대상 및 방법
  2.1 학습자료 생성
  2.2 신경회로망 구조 및 학습
 3. 결과
 4. 고안 및 결론
 감사의 글
 REFERENCES
 Abstract

저자정보

  • 이상경 Sang Kyung Lee. 강원대학교병원
  • 김용남 Yong Nam Kim. 강원대학교병원
  • 김수곤 Soo Kon Kim. 강원대학교병원, 강원대학교 의학전문대학원

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약에 따라 모든 이용자에게 무료로 제공됩니다.

      0개의 논문이 장바구니에 담겼습니다.