earticle

논문검색

Study on Importance Function for Particle Filter

초록

영어

As an important nonlinear filter theory, particle filter is a heated issue in domestic and foreign researches. The option of importance density is one of the key steps of particle filter algorithm. The proper option of importance density can minish the negative influence of filter algorithm caused by degeneracy problem. This paper introduces several widely-used options of importance density systemically, and analyzes their features and applied perspectives respectively. The paper also advances a comprehensive method of importance density, analyzes its technical features, explores the adjudgement and improvement of this method based on various performance, and finally puts forward the necessary further study according to the engineer requirements.

목차

Abstract
 1. The Optimum Importance Density Function
 2. Commonly used Methods for Importance Function Generation
  2.1. Use Prior Probability Density as Importance Function
  2.2. Mixed Importance Function Constituted of both Prior and Posterior Probability Density
  2.3. The Annealingprior Probability Density as the Importance Function
 3. Use Filter Algorithm to Design the Importance Function
  3.1. Use EKF to Design the Importance Function
  3.2. Design the Importance Function through UKF
  3.3. Design the Importance Function through Gaussian-Hermite Filter (GHF)
 4. Mixing of Prior Probability Density and UKF to Generate Importance Function
 5. Conclusion
 Acknowledgements
 Reference

저자정보

  • Liu Lu Harbin Institute of Petroleum,150027,Harbin, China
  • Meng Yang Haerbin Engineering University, 150001,Haerbin, China
  • Shu Geng Harbin Institute of Petroleum,150027,Harbin, China
  • Shu-fen Wang Harbin Institute of Petroleum,150027,Harbin, China
  • Yong-hui Wang Harbin Institute of Petroleum,150027,Harbin, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.