earticle

논문검색

Dynamic Cost-sensitive Ensemble Classification based on Extreme Learning Machine for Mining Imbalanced Massive Data Streams

초록

영어

In order to lower the classification cost and improve the performance of the classifier, this paper proposes the approach of the dynamic cost-sensitive ensemble classification based on extreme learning machine for imbalanced massive data streams (DCECIMDS). Firstly, this paper gives the method of concept drifts detection by extracting the attributive characters of imbalanced massive data streams. If the change of attributive characters exceeds threshold value, the concept drift occurs. Secondly, we give Cost-sensitive extreme learning machine algorithm, and the optimal cost function is defined by the dynamic cost matrix. Build the cost-sensitive classifiers model for imbalanced massive data streams under MapReduce, and the data streams are processed in parallel. At last, the weighted cost-sensitive ensemble classifier is constructed, and the dynamic cost-sensitive ensemble classification based on extreme learning machine classification is given. The experiments demonstrate that the proposed ensemble classifier under the MapReduce framework can reduce the average misclassification cost and can make the classification results more reliable. DCECIMDS has high performance by comparing to the other classification algorithms for imbalanced data streams and can effectively deal with the concept drift.

목차

Abstract
 1. Introduction
 2. Concept Drifts Detection with Scenario Characteristics
 3. Cost-sensitive Extreme Learning Machine
  3.1. Extreme Learning Machine
  3.2. Cost-sensitive Extreme Learning Machine
 4. Dynamic Cost-sensitive Ensemble Classification under the MapReduce framework for Mining Imbalanced Massive Data Streams
  4.1. Framework of MapReduce
  4.2. Dynamic Cost Matrix
  4.3. Definition of the Optimal Cost Function
  4.4. Dynamic Cost Optimization Algorithm
  4.5. Weight of Cost-sensitive Ensemble Classifiers
  4.6. Model of the Cost-sensitive Classifiers for Massive Data Streams under MapReduce
  4.7. Cost-sensitive Classification Algorithm Under MapReduce for Imbalance Massive Data Streams
 5. Simulation Experiment
  5.1. Data sets
  5.2. Evaluation Index and Cost Matrix
  5.3. Result of Experiments
 6. Conclusion
 Acknowledgements
 References

저자정보

  • Yuwen Huang Department of Computer and Information Engineering, Heze University, Heze 274015, Shandong, China, Key Laboratory of computer Information Processing, Heze University, Heze 274015, Shandong, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.