earticle

논문검색

ECG PVC Classification Algorithm based on Fusion SVM and Wavelet Transform

초록

영어

In the process of ventricular premature beat (PVC) and normal sinus rhythm (NSR) identification base on electrocardiogram (ECG), there exists problems like negative effect from ECG rhythm and low recognition rate. This paper proposes the electrocardiogram PVC classification algorithm based on support vector machine (SVM) and wavelet algorithm. The algorithm uses the wavelet transform to analyze ECG beating model, which is not influenced by the change of ECG waveform. The two feature sets respectively compose of statistical parameters of the wavelet coefficients and the selected wavelet coefficients. PVC and NSR are analyzed by using SVM. The experimental results show that this method improves the recognition rate of ECG.

목차

Abstract
 1. Introduction
 2. ECG research Methods
  2.1. ECG Filter and Heart Beat Detection
  2.2. ECG Feature Extraction
 3. The Basic Theory of SVM
  3.1. Discriminant Function
  3.2. Fisher Linear Discriminant Method
  3.3. Optimal Classification Plane
  3.4. Support Vector Machine
  3.5. Selection of Kernel Function
 4. PVC Classification
 5. Experimental Analysis
 6. Result Analysis
 7. Conclusion
 Acknowledgements
 References

저자정보

  • Huang Dong College of Mathematics and Computers Science, QinZhou University, QinZhou, China, 530099
  • Liao Zhengquan Internal Medicine-Cardiovascular Department, First People's Hospital of Qinzhou, QinZhou, Guangxi, China, 535000
  • Li Changbin College of Mathematics and Computers Science, QinZhou University, QinZhou, China, 530099
  • Li Dan College of Mathematics and Computers Science, QinZhou University, QinZhou, China, 530099
  • Huang Wendong College of Mathematics and Computers Science, QinZhou University, QinZhou, China, 530099

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.