earticle

논문검색

Value-at-Risk Analysis of the Long Memory Volatility Process:The Case of Individual Stock Returns

원문정보

Sang Hoon Kang, Seong-Min Yoon

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This article investigated the relevance of the skewed Student-t distribution innovation in analyzing volatility stylized facts, namely, volatility clustering, volatility asymmetry, and volatility persistence, in three individual Korean shares. For this purpose, we assessed the performance of RiskMetrics and two long memory Value-at-Risk (VaR) models (FIGARCH and FIAPARCH) with the normal, Student-t, and skewed Student-t distribution innovations. From the results of the empirical VaR analysis, the skewed Student-t distribution innovation provided more accurate VaR calculations, in capturing stylized facts in the volatility of three sample returns. Thus, the correct assumption of return distribution might improve the estimated performance of VaR models in the Korean stock market.

목차

Abstract
 Ⅰ. Introduction
 Ⅱ. Methodology
  1. Long memory volatility models
  2. VaR models
  3. Tests of accuracy for VaR estimates
 Ⅲ. Empirical Results
  1. Preliminary Analysis of Data
  2. Long Memory and Asymmetry in Volatility
  3. Empirical Results for VaR Estimation
 Ⅳ. Conclusions
 References

저자정보

  • Sang Hoon Kang School of Commerce, University of South Australia.
  • Seong-Min Yoon Department of Economics, Pusan National University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 7,000원

      0개의 논문이 장바구니에 담겼습니다.