earticle

논문검색

Robust Recommendation Algorithm based on Metadata Fusion

초록

영어

The metadata information of users and items for enhancing the recommendation system robustness has important valuable. Following this design philosophy, this paper first presents the user suspects assessment strategy based on Probabilistic Latent Semantic Analysis, the user suspected sexual and generic items such as meta-information to model parameters and Logistic Regression way into Bayesian probabilistic matrix factorization (BPMF) model, and then proposes Metadata-enhanced Variational Bayesian Matrix Factorization (MVBMF), designed a model of incremental learning strategy based on robust linear regression, in order to reduce the demand for model rebuilding. Experimental results show that MVBMF can effectively defend against shilling attacks and also has a high level of performance for strong and weak generalization.

목차

Abstract
 1. Introduction
 2. Metadata-enhanced Variational Bayesian Matrix Factorization model (MVBMF)
  2.1. Users Suspicion Assessment
  2.2. The Formal Description of MVBMF
  2.3. The Sampling Generated Semantic of MVBMF
  2.4. Robust Security Mechanism of MVBMF
  2.5. The Incremental Learning of MVBMF
 3. Experimental Analysis and Results
  3.1. Data Sets and Experimental Setup
  3.2. Dimension Selection
  3.3. Weak Generalization Situation
  3.4. Strong Generalization Situation
 5. Conclusion
 References

저자정보

  • Gao Feng College of computer, Changchun Normal University, Jilin 130032, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.