earticle

논문검색

Subspace Clustering Algorithm Based on Multi-rule Constraint

원문정보

초록

영어

For the fact that telecom data size is extremely huge and the management is much complicated, the paper proposes subspace clustering algorithm based on multi-rule constraint, to mine business knowledge information in a more efficient and accurate manner. By relying on K-means clustering algorithm, the method improves selection and mutation operation of genetic algorithms and thus corrects inappropriate choice of K-means initial clustering centers. Meanwhile, with the use of variable weighting strategy, data classification sparseness in the clustering is overcome. A fast and useful mining method is enabled for massive data. Results show its better performance in terms of computing efficiency, accuracy and ability.

목차

Abstract
 1. Introduction
 2. Application and Analysis of the Method
 3. Experiment Design and Discussion
  3.1. Test Scenario and Data
  3.2. Analysis of Telecom Business Application
  3.3. Data Magnitude Test and Analysis
  3.4. Performance Validation and Analysis
  3.5. Emulation Test
 4. Conclusion
 References

저자정보

  • Huiping Li Bao Tou Medical College Inner Mongolia Bao Tou 014040, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.