earticle

논문검색

The Nuclear Techniques and the Selection of Model Parameters in Big Data

초록

영어

Now a large scale of data every day, the large-scale data is usually in the form of database storage. The law of the people wants to find useful or knowledge, thus was born the Data Mining technology. SVM (Support Vector Machine, SVM) is a very useful method in data mining, this paper mainly discusses the Support Vector Machine (SVM) play a key role in nuclear techniques and the selection of model parameters is analyzed and evaluated. This article some methods about how to construct the kernel function is introduced for the model to find suitable kernel function is to provide some reference strategies and proposed kernel function method for the simulation analysis.

목차

Abstract
 1. Introduction
 2. Related Works
 3. Proposed Scheme
  3.1 Commonly Used Kernel Function is Introduced
  3.2 The Structure of the Kernel Function
  3.3 The Selection of Model Parameters
 4. The Experimental Results and Analysis
  4.1 Experimental Platform and Data
  4.2 The Experiment Results Analysis
 5. Conclusion
 References

저자정보

  • Wang Chunhong Computer Department, Inner Mongolia University of Finance and Economics, Hohhot, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.