earticle

논문검색

Research on Real-time Personalized Recommendation Algorithm

초록

영어

Personalized recommendation algorithm is core to recommendation systems, which matters the quality of recommendations of such system. The paper proposed an improved Slope one recommendation algorithm, M-Slope one. Based on real-time user interest model, the new method can calculate similarities between users and establish neighboring user groups to narrow down search scope of related items and improve the average rating differential equation for items. The algorithm proves its effectiveness for improving the precision of recommendations.

목차

Abstract
 1. Introduction
 2. Collaborative Filtering Recommendation Algorithm based on User Interest Model
  2.1. Description of the Algorithm
  2.2. Collaborative Filtering Recommendation Algorithm based on Real-time User Interest Model
 3. Improved Slope One Recommendation Algorithm
  3.1. Slope One Algorithm
  3.2. M-Slope One Algorithm
 4. Experiment Design and Discussion
  4.1. Experiment Data and Development Environment
  4.2. Method of Assessment
  4.3. Validation of Real-time User Interest Model and the Update Model
  4.4. Experimental Validation of M-Slope One Algorithm
 5. Conclusion
 References

저자정보

  • Liu Lijun Department of Logistics Information, Hunan Vocational College of Modern Logistics,Changsha 410131,china

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.