earticle

논문검색

Determination of Object Similarity Closure Using Shared Neighborhood Connectivity

원문정보

P.Radhakrishnan, A.Clementking

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Sequential object analysis are playing vital role in real time application in computer vision and object detections.Measuring the similarity in two images are very important issue any authentication activities with how best to compare two independent images. Identification of similarities of two or more sequential images is also the important in respect to moving of neighborhoods pixels. In our study we introduce the morphological and shared near neighborhoods concept which produces a sufficient results of comparing the two images with objects. Considering the each pixel compare with 8-connectivity pixels of second image. For consider the pixels we expect the noise removed images are to be considered, so we apply the morphological transformations such as opening, closing with erosion and dilations. RGB of pixel values are compared for the two sequential images if it is similar we include the pixels in the resultant image otherwise ignore the pixels. All un-similar pixels are identified and ignored which produces the similarity of two independent images. The results are produced from the images with objects and gray levels. It produces the expected results from our process.

목차

Abstract
 1. Introduction
 2. Methodology
 3. Results and Discussion
 4. Conclusion
 참고문헌

저자정보

  • P.Radhakrishnan Department of computer science, College of Computer Science, King Khalid University
  • A.Clementking Department of computer science, College of Computer Science, King Khalid University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.