earticle

논문검색

A Block Discriminant Analysis for Face Recognition

원문정보

초록

영어

As for illumination variation, traditional feature extraction methods are not satisfactory for face recognition. A block discriminant analysis algorithm is proposed to solve the problem. Firstly, local contrast enhancement is used to compensate for uneven illumination; secondly, discrete cosine transform (DCT) is implemented for divided image blocks. According to data distribution of DCT matrix, the block candidate features are selected, and merged to candidate features; finally, block discriminant analysis are carried out for features extraction. Experiments are tested on Yale and Yale B, the results prove the algorithm outperform related algorithms.

목차

Abstract
 1. Introduction
 2. Local Contrast Enhancement for Preprocessing Images
 3. Block Discriminant Analysis for Feature Extraction
  3.1. Block DCT Transform
  3.2 Calculation for Block Discriminant Factor
  3.3. LCE+BDA Algorithm
 4. Experiment and Result Analysis
  4.1. Experiment Result
  4.2 Evaluation on Performance
 5. Conclusion and Future Work
 Acknowledgements
 References

저자정보

  • Peng Cui School of Computer Science & technology, Harbin University of Science and Technology, Harbin, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.