earticle

논문검색

Transformer Fault diagnosing method based on Extenics and Rough Set theory

초록

영어

Extenics and rough set theory are brought into transformer fault diagnosing procedure in this paper to get rid of abundant information data and to obtain more precise diagnosing result. Using the dissolved gas data as fault diagnosing attribution set, attributions which are needed for transformer fault diagnosis are predigested and preliminarily grouped by means of rough set method, and then matter element model for transformer’s fault diagnosing is built. With the transformer’s standard fault modes as the transformer’s fault diagnosing decision set, utilizing extenics association function to calculate each fault degree, acceptance and rejection rule is defined to diagnose transformer’s fault. 76 dissolved gas information data have been collected to verify the method proposed in this paper, the diagnosing results show that the correctness of diagnosing results got by this method is better than frequently used IEC three ratio methods.

목차

Abstract
 1. Introduction
 2. Basic Theory of Transformer Fault Diagnosing based on Extenics and Attribute Predigesting of Rough Set
 3. Attribution Predigesting based on Rough Set Theory
  3.1. Attribution Predigesting
  3.2. Accepting and Rejecting the Predigested Results
 4. Extenics Fault Diagnosing
  4.1. Determine the Weight Coefficient
  4.2. Fault Diagnosing of Transformer using Association Function of Extenics and Attribution Predigesting of Rough Set Theory
 5. Calculation Example
 6. Conclusion
 Acknowledgements
 References

저자정보

  • Gefei Qiu Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • Zhaoxiang Xie Puer Power Supply Bureau, Yunnan Power Grid Corporation, Puer 665000, China
  • Sheng Huang Puer Power Supply Bureau, Yunnan Power Grid Corporation, Puer 665000, China
  • Yunjie Zuo Puer Power Supply Bureau, Yunnan Power Grid Corporation, Puer 665000, China
  • Zejiang Hu Kunming Power Supply Bureau, Yunnan Power Grid Corporation, Kunming 650000

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.