earticle

논문검색

Realizing Linear-Time Algorithms for Finding a Constant Number of Visible Candidate Edges in a Holed-Polygon

초록

영어

A polygon is (weakly) edge-visible if there exists an edge such that every other point in the polygon is visible from some point in the edge. There are well-known linear-time algorithms [1, 2] for finding all visible edges in a polygon without holes. In a polygon with holes, only a tight bound on the number of visible edges has been established; there may be at most three on the boundary and three on one of the holes [3]. In this paper, we present concrete linear-time algorithms for finding the constant number of visible candidate edges in a polygon with holes. Our algorithms take the similar approach of Shin and Woo [1] in a polygon without holes in order to realize the theoretical results of Park et al. [3] on the number of visible edg-es in a polygon with holes.

목차

Abstract
 1. Introduction
 2. Preliminary Definitions
 3. Comparing Two Approaches for a Polygon without Holes
 4. Determining Visible Candidate Edges in a Holed-Polygon
  4.1. Overview of Park et al.’s Results [3]
  4.2. Algorithms for a Polygon with Only One Hole
  4.3. Algorithms for a Polygon with Multiple Holes
 5. Conclusion and Further Researches
 5.1. Conclusion
 5.2. Further Researches
 Acknowledgements
 References

저자정보

  • Jong-Sung Ha Department of Software Engineering, Chungbuk National University
  • Kwan-Hee Yoo Department of Game and Contents, Woosuk University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.