earticle

논문검색

Social Clustering-based Similar User Indexing for Large Recommender System

초록

영어

The tremendous growth of data in recent years poses some key challenges for recommender systems. Theses keys are related with producing high quality recommendations and fast performing the composition recommended items. In this paper, we propose social clustering-based similar user index to not only improve the prediction of recommendations, but also compose personalized recommendations in fast. Through the experimental result, we show that proposed clustering method is more accurate than k-means which is prevalent clustering techniques. And, we reduce computation time needed for composing recommendation. That is, proposed clustering-based indexing method improves the performance of recommender systems which deals with a very large data.

목차

Abstract
 1. Introduction
 2. Related Works and Backgrounds
  2.1. Collaborative Filtering
  2.2. Clustering
  2.3. Recommender Algorithms with the Social Network
 3. Social Clustering-based Similar User Indexing Mechanism
  3.1. Generating Social Network with the Recommender Dataset
  3.2. Three Steps-clustering for Composing the Similar User Index
  3.3. Searching Similar Users with the Similar User Index
 4. Evaluation
  4.1. Response Time
  4.2. Clustering Accuracy
 5. Conclusion
 Acknowledgement
 References

저자정보

  • Haesung Lee Department of Computer Science, Kyonggi University, San 94-6, Yiui-dong, Yeongtong-ku, Suwon-si, Gyeonggi-do, Korea
  • Joonhee Kwon Department of Computer Science, Kyonggi University, San 94-6, Yiui-dong, Yeongtong-ku, Suwon-si, Gyeonggi-do, Korea

참고문헌

자료제공 : 네이버학술정보

※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

0개의 논문이 장바구니에 담겼습니다.