earticle

논문검색

Parameters Analysis for Basic Ant Colony Optimization Algorithm in TSP

초록

영어

In order to effectively address the lack of basic ant colony algorithm in terms of parameters, we use four-step method instead of the popular three-step, based on a large number of experiments of the parameters setting, this paper summed up an effective selection method for m, α, β, ρ and Q parameters to select the best combination of parameters. Applying the improved ant colony algorithms including optimal retention policy ant system, max-min ant system, ant-based sorting systems and best-worst ant system, performance comparison analysis was conducted with the same TSP problems, and experiments proved that the proposed method of parameter combinations greatly improves the speed of convergence.

목차

Abstract
 1. Introduction
 2. Ant Colony Algorithm Overview
  2.1. Basic Principles of Ant Colony Algorithm
  2.2. Shortness of Ant Colony Algorithm
 3. Study of Ant colony Algorithm Parameter Setting
  3.1. Hardware/software Platform
  3.2. Effects of Ants Number on Basic ant Colony Algorithm
  3.3. Information Heuristic Factor and Expectations Heuristic factor
 4. Experimental Discussion for Ant colony Algorithm
  4.1. Improved Ant Colony Optimization Algorithm
  4.2. Comparative Analysis of Simulation and Algorithm Performance
 5. Conclusion
 Acknowledgements
 References

저자정보

  • Xianmin Wei School of Computer Engineering, Weifang University 5147 Eastern Dongfeng Street, Weifang 261061, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.