earticle

논문검색

Study on A Recommendation Algorithm of Crossing Ranking in E-commerce

초록

영어

The analysis of the existing recommendation system and the main task in the electronic commerce application and the existing problems of the basis, according to the new user "cold start" problem, to adopt a user in a number of different categories of electronic commerce website access multi-B2C behavior information recommendation. This paper presents a crossing ranking recommendation algorithm. Its accuracy can be far more than the random recommendation, at the same time keeping and diversity were recommended. All these ensure the algorithm has a good user experience. Experiments show that the algorithm is accurate and the algorithm is further enhanced.

목차

Abstract
 1. Introduction
 2. Data Analysis of Multi-B2C Behavior
 3. Crossing Ranking Recommendation Algorithm of Multi-B2C Behavior
  3.1. The Recommendation Algorithm Based on Two Part Graph Resource Allocation
  3.2. Recommendation List
 4. Experimental Analysis and Results
  4.1. Dataset Partition
  4.2. Correlation Algorithm
  4.3. The Experimental Results of One-to-One Crossing Ranking Recommended
  4.4. The Experimental Results of Many-to-One Crossing Ranking Recommended
 5. Conclusion
 References

저자정보

  • Duan Xueying Department of Intelligence Engineering, Jilin Police College, Jilin 132000, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.