earticle

논문검색

Robust Support Vector Regression with Flexible Loss Function

초록

영어

In the interest of deriving regressor that is robust to outliers, we propose a support vector regression (SVR) based on non-convex quadratic insensitive loss function with flexible coefficient and margin. The proposed loss function can be approximated by a difference of convex functions (DC). The resultant optimization is a DC program. We employ Newton’s method to solve it. The proposed model can explicitly enhance the robustness and sparseness of SVR. Numerical experiments on six benchmark data sets show that it yields promising results.

목차

Abstract
 1. Introduction
 2. Robust SVR Model
 3. DC Program for the Robust SVR Model
 4. Experiments
 5. Conclusion
 Acknowledgments
 References

저자정보

  • Kuaini Wang College of science, China Agricultural University, Beijing, 100083, China
  • Ping Zhong College of science, China Agricultural University, Beijing, 100083, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.