earticle

논문검색

Infrequent Data Binning Method for Improving Prediction Performance : The Case of Rice Productivity Prediction model

초록

영어

This study investigates ways to improve the performance of rice productivity prediction model by employing the infrequent data binning method. Binning in this study is a technique to reassign infrequent data outside a specific scope, back in to the boundary value of the scope. The main findings of this study include: first, the binning method based on reassigning infrequent data contributes to improving the prediction performance of the model in question. Second, the effects of improvement differ depending on the length of the tail of a distribution. Third, there are no interaction effects due to combination of binned variables involving in different distribution categories with different length of long-tail

목차

Abstract
 1. Introduction
 2. Prediction Algorithm Development and Neural Network Method
 3. Impact Factors on Rice Productivity
 4. Research Process and Data Collection
 5. Prediction Model Development and Optimization
 6. Infrequent Data Binning
 7. Prediction Performance Comparison
 8. Conclusions and Discussion
 Acknowledgments
 References

저자정보

  • Ik Hoon Jang Dept. of Agricultural Economics and Rural Development, Seoul National University
  • Young Chan Choe Dept. of Agricultural Economics and Rural Development, Seoul National University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.