earticle

논문검색

A Frame work of Automatic Analysis System of Electrocardiogram Signals

초록

영어

The aim of this paper is twofold. First, we define an ECG feature parameter set (32 features) which could represent ECG signal as adequately as possible for diagnosing requirements. Second, we design an automatic classification framework. After benchmark point detection, feature parameter will be extracted. And then the classifier methods and its comparison based on SVM and QNN are presented. The long-term objective is to design a thorough system to realize the recognition of real-time ECG signal and enhance medical treatment.

목차

Abstract
 1. Introduction
 2. Feature Extraction and Selection
  2.1. Feature Extraction using Wavelet Transform
  2.2. Feature Selection Methods
 3. Classifier Design
  3.1. SVM Classifier
  3.2. QNN Classifier
 4. Experiment and Comparison
  4.1. Experiment result with BP and RBF Neural Network Classifiers
  4.2. Experiment Result with SVM Classifier
  4.3. Experiment Result with QNN Classifier
 5. Conclusion and Expectation
 Acknowledgements
 References

저자정보

  • Xiao Tang School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China, College of Mathematics and Software Science, Sichuan Normal University, Chengdu, 610066, China
  • Shu Lan College of Mathematics and Software Science, Sichuan Normal University, Chengdu, 610066, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.