earticle

논문검색

Shilling Attack Detection Algorithm based on Genetic Optimization

원문정보

초록

영어

Aiming at the low limitation of shilling attack detection technology unsupervised degree, this paper takes the group effect attack profile as the breakthrough point to construct the attack profile groups and the corresponding genetic optimization objective function of quantitative measure of the effects, and prove that the maximum value of the objective function in the ideal state marks the optimum detection effects in ideal situation. On this basis, the combination of genetic optimization process will be adaptive parameter posterior inference and objective function, and proposes the Iterative Bayesian Inference Genetic Detection Algorithm (IBIGDA).Experimental results show that IBIGDA can effectively detect shilling attacks of typical types even in lack of the system or attack-related prior parameters. IBIGDA algorithm can detect common shilling attack, unsupervised degree is high, with the actual application requirements.

목차

Abstract
 1. Introduction
 2. Iterative Bayesian Inference Genetic Detection Algorithm (IBIGDA)
  2.1. The Statistical Characteristics of Exists Attack between the User Profile Attack
  2.2. Generalized Variance Induced Attack Profile Group Effect Metric
  2.3. Genetic Optimization Objective Function
  2.4. Algorithm Description and Interpretation
 3. Experiment Design and Discussion
  4.1. Data Sets and Experimental Setup
  4.2. The Example Analysis of Shilling Attack Detection Process
  4.3. Detection Effect of Shilling Attack
 5. Conclusion
 References

저자정보

  • Tao Li Information Engineering Department, Jilin Police College Jilin 130032, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.