earticle

논문검색

Robust Online Filter Recommended Algorithm based on Attack Profile

원문정보

초록

영어

In view of the high vulnerability of traditional user-based recommendation algorithm to shilling attacks, In this paper, on the basis of the work of the group effect on the attack profiles, this paper analyzes the statistical features of the nearest neighbors of target users before and after attack, Design a kind of Attack Profiles online filter to attack the target user profile from the nearest neighbor filter. And this filter improves the user-based recommendation algorithm nearest neighbor selection strategy, thus proposes the Collaborative Recommendation algorithm based on Online Filter for Attack Profiles (CROFAP). Experiments show that attack profile online filter can accurately identify and filter out most attacks profile to ensure the robustness of the CROFAP algorithm.

목차

Abstract
 1. Introduction
 2. Recommendation Algorithm based on User
 3. Attack Profile Online Filter
  3.1. Before and After Target of Shilling Attacks in Statistical Characteristics of User's Nearest Neighbor
  3.2. The Filter Process and Interpretation
 4. Experimental Analysis and Results
  4.1. Data Sets and Experimental Setup
  4.2. The Filtering Effect of Attack Profile
  4.3. Parameter Selection
  4.4. The Experimental Results
 5. Conclusion
 References

저자정보

  • Gao Feng College of computer, Changchun Normal University, Jilin 130032, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.