earticle

논문검색

Design and Implementation of Good Bibimbap Restaurant Recommendation System Using TCA based on BigData

초록

영어

This paper designs the model of bibimbap restaurant recommendation system in BigData(collected from Twitter's data related to bibimbap). We suggests a TCA (Termite Colony Algorithm) k-means algorithm for clustering BigData, TCA algorithm that used the habits of termites. Through the TCA, finding the appropriate initial clustering needed for the K-means clusters is the goal. We recommend good Bibimpop restaurant to user, using "Bibimbap Restaurant database of Korea (2012)" and an "Taste Adjective Dictionary for the Globalization of Korean Food" for Ranking Algorithm.

목차

Abstract
 1. Introduction
 2. Related Work
  2.1. BigData
  2.2. Recommendation System
  2.3. Clustering
 3. Design for a Good Bibimbap Restaurant Recommendation System
  3.1. Behavioral Habits of Termites
  3.2. Termite Colony Algorithm
  3.3. Similar Twitter Search Algorithm
  3.4. Ranking and Recommendation
 4. Conclusions
 References

저자정보

  • Suk-jin Kim Department of Computer Engineering, Chonbuk National University 664-14 DuckJin-Dong, DuckJin-Gu, Jeonju, Korea
  • Yong-sung Kim Department of Computer Engineering, Chonbuk National University 664-14 DuckJin-Dong, DuckJin-Gu, Jeonju, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.