earticle

논문검색

Sparse Matrix of Image Denoising Method based on SVD

초록

영어

In this paper, based on the K - SVD and residual error than the low SNR image sparse representation denoising algorithm. On the basis of the foregoing contents, this paper expounds on the build process and mechanism analysis of the algorithm, the paper on the basis of the subjective evaluation reference peak signal-to-noise ratio (PSNR) as the objective evaluation standard. Can be seen from the results of simulation experiments for different kinds of image denoising, image sparse decomposition based on a complete atom library has a better effect of denoising algorithm often, this is because after complete the atoms in the dictionary has redundancy, to show more abundant characteristic information, can more effectively extract the image features. In the proposed algorithm, the K - SVD algorithm for image sparse decomposition to optimize dictionary and residual error than the threshold for accurate division of image information and provide evidence for image noise effectively, a combination of both in image denoising, especially in low SNR image denoising experiment obtained good effect. The experimental results also from another side shows the sparse decomposition based on a complete atom library on image denoising application potential.

목차

Abstract
 1. Introduction
 2. Related Works
 3. Based on SVD Decomposition Method of Noise
 4. Simulation Results and Analysis
 5. Conclusion
 References

저자정보

  • Wang Shu-zhong Shandong College of Information Technology,Weifang,261061,China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.