earticle

논문검색

A Kind of Chaotic Particle Swarm and Fuzzy C- mean Clustering Based on Genetic Algorithm

초록

영어

This paper proposes a new clustering algorithm that combines genetic algorithm and chaotic particle swarm optimization with fuzzy C- means (GCQPSO-FCM), in order to solve the issue that the fuzzy C- mean algorithm is sensitive to the initial value. First, make full use of genetic algorithms to calculate the optimal number of clusters of sample population and select a valid criterion function as a fitness function; Furthermore, introduce chaos strategy in particle swarm algorithm to improve the algorithm global search ability, also contribute to the particles are more easily jump out of local bondage. Two speed factors are defined to accelerate the convergence, which also improves the performance of the algorithm. Experimental results show that our improved GCQPSO-FCM algorithm is better in efficiency and quality than the original algorithm.

목차

Abstract
 1. Introduction
 2. The Quantum Particle Swarm Based on Chaotic Sequence
  2.1 Chaotic Sequence
  2.2 The Quantum Particle Swarm Algorithm with Chaos
 3. Optimization of Fuzzy C- means Algorithm
  3.1 FCM Algorithm
  3.2 Optimization of Particle Velocity
 4. GCQPSO-FCM Algorithm
  4.1 The Effective Criterion Function
  4.2 Algorithm Analysis
 5. Experimental Analysis
  5.1 Experiment Contents
  5.2 Experimental Analysis
 6. Conclusion
 References

저자정보

  • Zhang Chun-na School of Software, University of Science and Technology Liaoning, Anshan Liaoning 114051, China
  • Li Yi-ran College of Applied Technology, University of Science and Technology Liaoning, Anshan Liaoning 114011, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.