earticle

논문검색

Bessel Function Self-Feedback Chaotic Neural Network Model and Applications

초록

영어

In this paper, a new chaotic neural network model is proposed, we introduce a Bessel function as self-feedback term in this model, Compared with other chaotic neural network model, owing to the Bessel function is a nonlinear function with good nature, and it has stronger function approximation ability, so that the novel chaotic network model has stronger traversal search ability. When it is applied to solve combinatorial optimization problems, the simulation results show that the network has better ability to avoid network convergence to local minima if the appropriate coefficient of expansion and the network has been taken, so the efficiency of network optimization capability is improved.

목차

Abstract
 1. Introduction
 2. Chaotic Neural Network of Bessel Function Self-feedback
  2.1. Bessel Function
  2.2. Chaotic Neuron Model of Bessel Function Self-feedback
  2.3. Chaotic Neuron Model of Bessel Function Self-feedback
  2.4. Network Energy Function and Stability Analysis
 3. Bessel Function Self-feedback Chaotic Neural Network Applications
  3.1. Application to Function Optimization
  3.2. Application to Combination Optimization (TSP)
 4. Conclusion
 References

저자정보

  • Yonggang Ye School of Basic Science, Harbin University of Commerce Harbin Heilongjiang China 150028

참고문헌

자료제공 : 네이버학술정보
  • 1Chaotic simulated annealing by a neural network model with transient chaos네이버 원문 이동
  • 2(Reference title not available)

※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

0개의 논문이 장바구니에 담겼습니다.