earticle

논문검색

Human Localization based on Distributed Laser Range Finders

초록

영어

Localizing humans inside a home or office environment is vital for various service robot applications. This paper presents a novel method to estimate human locations using distributed laser range finders. First, the Kalman filter is employed on the laser data to produce a statistically optimal scan estimate. Next, Scan points in the foreground are then grouped using mean shift clustering algorithm. An area-divided clustering mode is introduced to ensure enough clusters to represent the contour of human. Finally, the centers of humans are estimated from the obtained clusters using incomplete ellipse fitting. Experiments are conducted to prove the robustness and efficiency of the proposed method.

목차

Abstract
 1. Introduction
 2. Data Processing based on the Kalman Filtering
  2.1. Statistic characteristic of laser data
  2.2 Kalman Filtering
 3. Clustering of Detected Edge Points
 4. Cooperative Localization System
  4.1 Distribution of Laser Range Finders
  4.2. Sensor Calibration
  4.3. Human Center Position Extraction
 5. Experimental Results
 6. Conclusion and Future Work
 ACKNOWLEDGEMENTS
 References

저자정보

  • Peng Duan School of Control Science and Engineering, Shandong University, Jinan, 250061, P.R. China
  • Guohui Tian School of Control Science and Engineering, Shandong University, Jinan, 250061, P.R. China
  • Wei Zhang School of Control Science and Engineering, Shandong University, Jinan, 250061, P.R. China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.