earticle

논문검색

Bottle Up Granular Computing Classification Algorithms

초록

영어

Shape of granule is one of the important issues in granular computing classification problems and related to the classification accuracy, the number of granule, and the join process of two granules. A bottle up granular computing classification algorithm (BUGrC) is developed in the frame work of fuzzy lattices. Firstly, the granules are represented as 4 shapes, namely hyperdiamond granule, hypersphere granule, hypercube granule, and hyperbox granule. Secondly, the granule set is induced by the training set and the bottle up join operator. Thirdly, machine learning benchmark datasets are used to analyze and discuss the BUGrC with different shape granules.

목차

Abstract
 1. Introduction
 2. Motivation and Related Work
  2.1. Motivation
  2.2. Related Work
 3. Bottle Up Granular Computing Classification Algorithms
  3.1. Representation of Four Kinds Shapes of Granules
  3.2. Join Operator for BUGrC
  3.3 Algebra System Induced by Granule Set and Inclusion Relation
  3.4. Bottle Up Granular Computing Classification Algorithms
 4. Experiments
  4.1. Classification Problems in space R2
  4.2. Classification Problems in Space RN
 5. Conclusions
 Acknowledgements
 References

저자정보

  • Hongbing Liu School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
  • Chang-An Wu School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.