earticle

논문검색

Handling Big Data Stream Analytics using SAMOA Framework - A Practical Experience

초록

영어

Data analytics and machine learning has always been of great importance in almost every field especially in business decision making and strategy building, in healthcare domain, in text mining and pattern identification on the web, in meteorological department, etc. The daily exponential growth of data today has shifted the normal data analytics to new paradigm of Big Data Analytics and Big Data Machine Learning. We need tools to perform online data analysis on streaming data for achieving faster learning and faster response in data analytics as well as maintaining scalability in terms of huge volume of data. SAMOA (Scalable Advanced Massive Online Analysis) is a recent framework in this reference. This paper discusses the architecture of this SAMOA framework and its directory structure. Also it expresses a practical experience of configuring and deployment of the tool for handling massive online analysis on Big Data.

목차

Abstract
 1. Introduction
 2. Background
  2.1. Maven Building Tool
  2.2. Standard Directory Structure of Maven
  2.3. GitHub
 3. SAMOA Framework
  3.1. SAMOA Users and Design Goals
  3.2. Usage Perspective Architecture of SAMOA
  3.3. SAMOA Modular Components
 4. Execution of SAMOA Sample Example from the Scratch
  4.1. Installing and Configuring Maven
  4.2. Download SAMOA
  4.3. Execute the Package Build Phase
  4.4. Collect Data Set
  4.5. Execute a Task of SAMOA on a Specific Platform
 5. Conclusion
 6. Future Perspective
 Acknowledgment
 References

저자정보

  • Bakshi Rohit Prasad Indian Institute of Information Technology, Allahabad
  • Sonali Agarwal Indian Institute of Information Technology, Allahabad

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.