earticle

논문검색

Dynamic Adjustment Strategies of Inertia Weight in Particle Swarm Optimization Algorithm

원문정보

초록

영어

The high search speed and efficiency, and simple algorithm of particle swarm optimization algorithm make it suitable for actual-value processing. Starting from the angle of weight, this paper studies several improved particle swarm optimization algorithms and divides the improvement into three types as linear decreasing weight strategy, self-adaptive weight strategy and random weight strategy. Furthermore, this paper also demonstrates the principles of these three improved algorithms and tests and analyzes the three algorithms with test function. It is suggested by the result of tests that random weight strategy can make the algorithm more stable, linear decreasing weight strategy can improve the effect of optimization, while self-adaptive weight strategy can accelerate the convergence. However, the operation of self-adaptive weight strategy takes obviously more time than that of the other two strategies.

목차

Abstract
 1. Introduction
 2. Particle Swarm Optimization Algorithm
  2.1. PSO Principles
  2.2 The Flow of PSO Algorithm
 3. Standard PSO Algorithm
  3.1. Inertia Weight
  3.2 Features of PSO Algorithm
 4. Analysis and Selection of Algorithm Parameters
  4.1. Parameter Analysis
 5. Strategies of Improving PSO Algorithm Weight
  5.1. Brief Introduction of Several Test Functions
  5.2 Three Weight Improvement Strategies
 6. Test Three Weight Improvement Strategies
  6.1 Evolution Curve of Three Strategies Tests of Griewank Function
  6.2 Evolution Curve of Three Strategies Tests of Rastrigin Function
  6.3 Evolution Curve of Three Strategies Tests of Schaffer Function
  6.4 Evolution Curve of Three Strategies Tests of Ackley Function
  6.5 Evolution Curve of Three Strategies Tests of Rosenbrock Function
  6.6 Test Results and Conclusion Analysis of Three Weight Improvement Strategies
 7. Conclusion
 References

저자정보

  • Yang Xianfeng School of Information Engineering, Henan Institute of Science and Technology, Henan Xinxiang 453003, China
  • Liu ShengLi HEBI College of Vocation and Technology, Henan Hebi 458030, China

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.