원문정보
초록
영어
Collaborative filtering has been popular in commercial recommender systems, as it successfully implements social behavior of customers by suggesting items that might fit to the interests of a user. So far, most common method to find proper items for recommendation is by searching for similar users and consulting their ratings. This paper suggests a new similarity measure for movie recommendation that is based on genre interest, instead of differences between ratings made by two users as in previous similarity measures. From extensive experiments, the proposed measure is proved to perform significantly better than classic similarity measures in terms of both prediction and recommendation qualities.
한국어
협력 필터링은 상업적 추천 시스템에서 널리 사용되어 왔는데, 고객의 사회적 행태를 구현하여 사용자의 흥 미에 부합하는 항목들을 제안하기 때문이다. 현재까지 적절한 항목을 추천하기 위한 가장 보편적인 방법은 유사한 사용자들을 찾아 그들의 평가치를 참조하는 방법이다. 본 논문은 영화를 추천하기 위해서 장르 흥미도를 기반으로 하는 새로운 유사도 공식을 제안하는데, 이는 기존 공식에서 사용자들의 평가등급 차이를 기반으로 하는 것과 대비 된다. 광범위한 실험 결과에 따르면, 제안한 공식은 정확도와 추천의 질에 있어서 전통적인 유사도 공식의 성능을 크게 향상시키는 것으로 확인되었다.
목차
요약
1. Introduction
2. Memory-based Collaborative Filtering
3. Proposed Similarity Measure
3.1 Motivation
3.2 Description
4. Performance Experiments
5. Conclusions
REFERENCES