earticle

논문검색

Derivation of the Fisher Information Matrix for 4-Parameter Generalized Gamma Distribution Using Mathematica

원문정보

초록

영어

Fisher information matrix plays an important role in statistical inference of unknown parameters. Especially, it is used in objective Bayesian inference where we calculate the posterior distribution using a noninformative prior distribution, and also in an example of metric functions in geometry. To estimate parameters in a distribution, we can use the Fisher information matrix. The more the number of parameters increases, the more its matrix form gets complicated. In this paper, by using Mathematica programs we derive the Fisher information matrix for 4-parameter generalized gamma distribution which is used in reliability theory.

목차

Abstract
 1. Introduction
 2. Required Functions, Mathematica Commands, and the Form of Fisher Information Matrix for 4-Parameter Generalized Gamma Distribution
  2.1. Functions Required to Derive the Fisher Information Matrix for 4-Parameter Generalized Gamma Distribution
  2.2. Mathematica Commands Required for the Fisher Information Matrix
 3. Calculation and Derivation of the FisherInformation matrix for 4-Parameter Generalized Gamma Distribution
 4. Examples and Conclusion
 Acknowledgements
 References

저자정보

  • Tae Ryong Park Department of Computer Engineering, Seokyeong University, Seoul, Korea.

참고문헌

자료제공 : 네이버학술정보

    ※ 기관로그인 시 무료 이용이 가능합니다.

    • 4,000원

    0개의 논문이 장바구니에 담겼습니다.