earticle

논문검색

Original Article

Effect of Different Fertilizer Ratio and Planting Dates on Growth and Acanthoside D content of Acanthopanax divaricatus and Acanthopanax koreanum

초록

영어

The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.

저자정보

  • Jung Jong Lee Yeongcheon Agricultural Technology & Extension Center
  • Sang Hyun Lee Department of Applied Plant Science, Chung-Ang University
  • Jae Sang Park School of Applied Biosciences, Kyungpook National University
  • Chung Berm Park Department of Herbal Crop Research
  • Young Sub Ahn Department of Herbal Crop Research
  • Sang Chul Lee School of Applied Biosciences, Kyungpook National University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.