earticle

논문검색

N-Best Re-scoring Approaches for Mandarin Speech Recognition

초록

영어

The predominant language model for speech recognition is n-gram language model, which is locally learned and usually lacks global linguistic information such as long-distance syntactic constraints. We first explore two n-best re-scoring approaches for Mandarin speech recognition to overcome this problem. The first approach is linear re-scoring that can combine several language models from various perspectives. The weights of these models are optimized using minimum error rate learning method. Discriminative approach can also be used for re-scoring with rich syntactic features. To overcome the speech text insufficiency problem for discriminative model, we propose a domain adaptation method that trains the model using Chinese pinyin-to-character conversion dataset. Then we present a cascaded approach to combine the two re-scoring models in pipeline that takes the probability output of linear re-scoring model as the initial weight of the discriminative model. Experimental results show that both re-scoring approaches outperform the baseline system, and the cascaded approach achieves the best performance.

목차

Abstract
 1. Introduction
 2. Background
  2.1. Enhanced language models
  2.2. N-best Re-scoring approaches
 3. Baseline Speech Recognition System
  3.1. Word n-gram Language Model
 4. Re-scoring Approaches
  4.1. Linear re-scoring approach
  4.2. Domain adaptation discriminative re-scoring approach
  4.3. Cascaded re-scoring approach
 5. Sub Models
  5.1. Character N-gram Language Model
  5.2. Character-Based Discriminative Model
  5.3. Pinyin-Word Co-occurrence Model
  5.4. POS Models
  5.5. Dependency model
 6. Experiments
  6.1. Baseline System
  6.2. Linear re-scoring approach
  6.3. Domain adaptation discriminative re-scoring approach
  6.4. Cascaded re-scoring approach
 7. Conclusion
 References

저자정보

  • Xinxin Li Harbin Institute of Technology Shenzhen Graduate School Shenzhen, China, 518055
  • Xuan Wang Harbin Institute of Technology Shenzhen Graduate School Shenzhen, China, 518055
  • Jian Guan Harbin Institute of Technology Shenzhen Graduate School Shenzhen, China, 518055

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.