earticle

논문검색

Ant Colony Optimization Algorithm Based on Dynamical Pheromones for Clustering Analysis

초록

영어

This paper presents an improved clustering algorithm with Ant Colony optimization (ACO) based on dynamical pheromones. Pheromone is an important factor for the performance of ACO algorithms. Two strategies based on adaptive pheromones which improved performance are introduced in this paper. One is to adjust the rate of pheromone evaporation dynamically, named as P , and the other is to adjust the strength of pheromone dynamically, named as Q . Two evaluation indices, Precision and Recall, are chosen to validity the improvement strategies. Numerical simulations demonstrate that the two strategies on pheromone can achieve better performance than basic ant colony algorithm and clustering algorithm with ant colony based on best solution kept.

목차

Abstract
 1. Introduction
 2. Clustering Algorithm with ACO based on Dynamic Pheromone
  2.1. Ant Colony System
  2.2. Clustering algorithm with ACO
  2.3. The strategy of dynamical pheromones
  2.4. Clustering algorithm with ant colony optimization based dynamical pheromones
 3. Simulation Experiment
  3.1. Datasets and parameters setting
  3.2. Comparison of results
  3.3. Discussion
 4. Conclusion and Future Work
 Acknowledgements
 References

저자정보

  • Xiaoyong Liu Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong, 510665, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.