earticle

논문검색

New Construction of Even-variable Rotation Symmetric Boolean Functions with Optimum Algebraic Immunity

초록

영어

The rotation symmetric Boolean functions which are invariant under the action of cyclic group have been used as components of different cryptosystems. In order to resist algebraic attacks, Boolean functions should have high algebraic immunity. This paper studies the construction of even-variable rotation symmetric Boolean functions with optimum algebraic immunity. We construct ( n/4 - 3) different rotation symmetric Boolean functions which achieve both optimum algebraic immunity and high nonlinearity when an even (n ≥ 16) is given.

목차

Abstract
 1. Introduction
 2. Preliminaries
 3. New construction class of even-variable RSBFs with maximum AI
  3.1. Construction
  3.2. The AI of  f(x) in Construction(h) (h ∈ H)
 4. Nonlinearity
 5. Conclusion
 Acknowledgements
 References

저자정보

  • Yindong Chen College of Engineering, Shantou University, Shantou, 515063 China
  • Hongyan Xiang College of Engineering, Shantou University, Shantou, 515063 China
  • Ya-nan Zhang College of Engineering, Shantou University, Shantou, 515063 China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.