earticle

논문검색

Incremental Weighted Mining based on RFM Analysis for Recommending Prediction in u-Commerce

초록

영어

This paper proposes a new incremental weighted mining based on RFM((Recency, Frequency, Monetary) analysis for recommending prediction in u-commerce. Association rules search for the associated item set on large database. Association rules are frequently used by the marketing pattern analysis in e-commerce, recommendation to promote for selling a product in marketing. The proposing method can extract frequent items and create weighted association rules using incremental weighted mining based on RFM analysis rapidly when new data are added persistently in order to predict frequently changing trends by emphasizing the important items with high purchasability according to the threshold for creative weighted association rules in u-commerce. To verify improved better performance of proposing system than the previous systems, we carry out the experiments in the same dataset collected in a cosmetic internet shopping mall.

목차

Abstract
 1. Introduction
 2. Relative Works
  2.1. RFM Analysis
  2.2. Weighted Association Rules
  2.3. Mining using FP-tree
  2.4. Incremental Mining
 3. Our Proposal for Recommending Prediction in u-commerce
  3.1. System Architecture
  3.2. Incremental Weighted Mining based on RFM Analysis
  3.3. The Procedural Algorithm for Recommendation
  3.4. The Analysis of Application for Weighted Mining for Recommendation
 4. The Environment of Implementation and Experiment & Evaluation
  4.1. Experimental Environment
  4.2. Experimental Data for Evaluation
  4.3. Experiment & Evaluation
 5. Conclusion
 Acknowledgements
 References

저자정보

  • Young Sung Cho Department of Computer Science, Chungbuk National University, Cheongju, Korea
  • Song Chul Moon Department of Computer Science, Namseoul University, Cheonan-city, Korea, Korea
  • In-Bae Oh Department of Industry Management, Chungbuk Health & Science University, Chungbuk, Korea
  • Jung-Hoon Shin Department of Software Engineering, Chonbuk National University, Jeonju, Korea
  • Keun Ho Ryu Department of Computer Science, Chungbuk National University, Cheongju, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.