earticle

논문검색

Detecting Change Patterns in Aspect Oriented Software Evolution : Rule-based Repository Analysis

초록

영어

Interesting information and Meta-information about software systems can be extracted by analyzing their evolution histories. This information has been proved useful for understanding software evolution, predicting future changes, and performing an efficient change impact analysis. A rich source code repository is a prerequisite for a high quality evolution analysis. Nonetheless, the evolutionary information contained in current versioning systems for Aspect Oriented (AO) software is incomplete and of low quality, hence limiting the scope of AO software evolution analysis. In spite of AO Programming (AOP) characteristics, none of current versioning tools match the need of controlling and storing the AO software evolution, they do not perform well with obliviousness and quantification found in AO code. In this paper, we suggest a rule-based repository for AO software evolution, and specifically for AspectJ programming language. This repository is dedicated to handle the proper characteristics of AO paradigm. In our proposal changes are formulated as rewriting rules and recorded in the repository when they are applied. Then, this last is analyzed to detect change patterns in AspectJ software evolution. We give here, the details of our rule-based repository, as well as the proposed approach for change pattern detection. We present a tool validation and some experimentation to prove the feasibility and the efficiency of our proposals.

목차

Abstract
 1. Introduction
 2. Ripple Effects of AO Software Evolution
 3. AO Software Evolution versus Current Versioning Repositories
 4. Rule-based Repository for AspectJ Programs
  4.1. Overview of our Approach
  4.2. Program Representation
  4.3. Change Representation
  4.4. The rule-based Repository
  4.5. Discussion
 5. Our Approach for Change Pattern Detection
  5.1. Change Extraction
  5.2. Atomic Change Set
  5.3. Atomic Change Transactions
  5.4. Detecting Change Patterns
 6. Validation
  6.1. The Repository
  6.2. Change Pattern Detection
 7. Experimentation
 8. Related Work
 9. Conclusion
 References

저자정보

  • Hanene Cherait Computer Science Department, LISCO research laboratory Badji Mokhtar–Annaba University, P.O. Box 12, 23000 Annaba, Algeria
  • Nora Bounour Computer Science Department, LISCO research laboratory Badji Mokhtar–Annaba University, P.O. Box 12, 23000 Annaba, Algeria

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.