earticle

논문검색

Verb Classification Using Bilingual Lexicon and Translation Information in Tibetan Language

초록

영어

Automatically acquiring semantic verb classes from corpora is a challenging task, especially with no existing treebank. Building a high-performing parser for a language is still crucially depends on the existence of large, in-domain texts as training data. While previous work has focused primarily on major languages, how to extend these results to other languages is the way to avoid working start from scratch. In general, a large monolingual corpus in a resource-rich source language labeled with lexico-syntactic information, and a very limited bilingual corpus are available. This paper addresses the problem of verb classification automatically in Tibetan using bilingual lexicon and translation information.

목차

Abstract
 1. Introduction
 2. Related Work
 3. Corpus Used
  3.1 Data Resources
  3.2 Verb Classes in Tibetan Language
 4. Verb Classification Method
  4.1 Candidate Selection by Translation Information
  4.2 Verb Classification by Translation Information
 5. Experiments
 6.. Conclusion and Future Work
 Acknowledgements
 References

저자정보

  • Lirong Qiu School of Information Engineering, Minzu University of China, Beijing, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.